Dynamic spatiotemporal synaptic integration in cortical neurons: neuronal gain, revisited.

نویسنده

  • Rony Azouz
چکیده

Gain modulation is a ubiquitous phenomenon in cortical neurons, providing flexibility to operate under changing conditions. The prevailing view is that this modulation reflects a change in the relationship between mean input and output firing rate brought about by variation in neuronal membrane characteristics. An alternative mechanism is proposed for neuronal gain modulation that takes into account the capability of cortical neurons to process spatiotemporal synaptic correlations. Through the use of numerical simulations, it is shown that voltage-gated and leak conductances, membrane potential, noise, and input firing rate modify the sensitivity of cortical neurons to the degree of temporal correlation between their synaptic inputs. These changes are expressed in a change of the temporal window for synaptic integration and the range of input correlation over which response probability is graded. The study also demonstrates that temporal integration depends on the distance between the inputs and that this interplay of space and time is modulated by voltage-gated and leak conductances. Thus, gain modulation may reflect a change in the relationship between spatiotemporal synaptic correlations and output firing probability. It is further proposed that by acting synergistically with the network, dynamic spatiotemporal synaptic integration in cortical neurons may serve a functional role in the formation of dynamic cell assemblies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex

Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...

متن کامل

Modulation of firing rate by background synaptic noise statistics in rat visual cortical neurons.

It has been shown previously that background synaptic noise modulates the response gain of neocortical neurons. However, the role of the statistical properties of the noise in modulating firing rate is not known. Here, the dependence of firing rate on the statistical properties of the excitatory to inhibitory balance (EI) in cortical pyramidal neurons was studied. Excitatory glutamatergic and i...

متن کامل

Tonic Synaptic Inhibition Modulates Neuronal Output Pattern and Spatiotemporal Synaptic Integration

Irregular firing patterns are observed in most central neurons in vivo, but their origin is controversial. Here, we show that two types of inhibitory neurons in the cerebellar cortex fire spontaneously and regularly in the absence of synaptic input but generate an irregular firing pattern in the presence of tonic synaptic inhibition. Paired recordings between synaptically connected neurons reve...

متن کامل

Thin Dendrites of Cerebellar Interneurons Confer Sublinear Synaptic Integration and a Gradient of Short-Term Plasticity

Interneurons are critical for neuronal circuit function, but how their dendritic morphologies and membrane properties influence information flow within neuronal circuits is largely unknown. We studied the spatiotemporal profile of synaptic integration and short-term plasticity in dendrites of mature cerebellar stellate cells by combining two-photon guided electrical stimulation, glutamate uncag...

متن کامل

Cortical Songs Revisited: A Lesson in Statistics

Recordings from single neurons in the cortex have revealed precisely repeating patterns of synaptic events. These repeats are known as cortical "motifs" and have been suggested to reflect the precise replay of spatiotemporal firing sequences ("synfire" chains). In this issue of Neuron, Mokeichev et al. use compelling statistical analysis to show that, rather than being evidence of deterministic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 4  شماره 

صفحات  -

تاریخ انتشار 2005